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Abstract

Distributed Video Coding (DVC) is rapidly gaining popularity as a low cost, robust video coding

solution, that reduces video encoding complexity. DVC is built on Distributed Source Coding (DSC)

principles where correlation between sources to be compressed is exploited at the decoder side. In

the case of DVC, a current frame available only at the encoder is estimated at the decoder with side

information generated from other frames available at the decoder. One of the main challenges in DVC

design is that correlation among the source and side information needs to be estimated online and

as accurately as possible. Since correlation dynamically changes with the scene, in order to exploit

the robustness of DSC code designs, we integrate particle filtering with standard belief propagation

(BP) decoding for inference on one joint factor graph to estimate correlation among source and side

information. Correlation estimation is performed online as it is carried out jointly with decoding of the

graph-based DSC code. Moreover, we demonstrate our joint bit-plane decoding with adaptive correlation

estimation schemes within state-of-the-art DVC systems, which are transform-domain based with a

feedback channel for rate adaptation. Experimental results show that our proposed system gives a

significant performance improvement compared to the benchmark state-of-the-art DISCOVER codec

(including correlation estimation) and the case without dynamic particle filtering tracking, due to improved

knowledge of timely correlation statistics via the combination of joint bit-plane decoding and particle-

based BP tracking.

This work was supported in part by NSF under grant CCF 1117886.
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I. INTRODUCTION

Distributed compression or Distributed Source Coding (DSC) refers to separate compression and joint

decompression of multiple correlated sources. DSC started as an information-theoretical problem in the

renowned 1973 paper of Slepian and Wolf [1]. Slepian and Wolf considered lossless separate compression

of two discrete sources, and showed that, roughly speaking, there is no performance loss compared to joint

compression as long as joint decompression is performed. This remarkable result triggered significant

information-theoretical research resulting in many extensions.

In 1976, Wyner and Ziv [2] considered a lossy version (i.e., with a distortion constraint) of the non-

asymmetric Slepian-Wolf problem, where one source is available at the decoder as side information.

Wyner and Ziv showed that for a particular correlation where source and side information are jointly

Gaussian, there is no performance loss due to the absence of side information at the encoder.

A possible realization of DSC via the use of channel codes was proposed 1974 in [3], but due to the

lack of any potential application of DSC, work on code designs, i.e., how to code the sources to approach

given bounds, started only a decade ago. The first practical design was reported in 1999 [4] followed by

many improved solutions (see and references therein). The key beauty of the developed DSC designs is

that conventional channel coding can be used for compression [5].

These theoretical advances and powerful code designs have recently paved the way towards practical

applications. Distributed Video Coding (DVC) or Wyner-Ziv video coding, is one of the earliest and

most advanced applications of DSC to date. DVC [6], [7] was proposed as a solution for emerging

many-to-one setups, such as video surveillance with tiny cameras and cell-to-cell communications, where

low encoding complexity is a must. It brought a paradigm shift from the conventional centralized video

coding architecture, where encoding complexity is much higher than decoding complexity, typical of

traditional television broadcasting.

In DVC, the DSC paradigm is used to avoid a computationally expensive temporal prediction loop

at the encoder by exploiting inter-frame video correlation with Wyner-Ziv (WZ) coding. It relies on the

fact that with WZ coding, side information is not needed at the encoder. WZ source coding is usually

realized by quantization followed by Slepian-Wolf (SW) coding of quantization indices based on channel

coding [5]. Quantization is used to tune rate-distortion performance, while the SW coder is essentially

a conditional entropy coder. The WZ decoder will thus comprise an SW decoder, which makes use of

side information to recover the coded information. The SW decoder is followed by a minimum-distortion

reconstruction of the source using side information and the SW decoded quantization index [4], [5].

September 21, 2011 DRAFT



3

Practical WZ code design based on quantization plus conventional channel codes is possible since

correlation between the source and side information is seen as a virtual communication channel which

can be expressed in the form X = Y + N , where X is the source to be recovered defined as the sum of

the side information Y and noise N . As long as this virtual channel can be modeled by some standard

communication channel, e.g., Gaussian, channel codes can be effectively employed. Designs [5], [8]

based on trellis-coded quantization followed by advanced channel coding come very close to the bounds

for two jointly Gaussian sources.

However, similar to the information-theoretical DSC framework [1], [2], the state-of-the-art SW and

WZ code designs based on turbo and low-density parity-check (LDPC) codes perform well only when

correlation statistics between sources are stationary and known at the encoder and decoder. The problem of

online statistical correlation estimation between the source and side information is particularly important

in DVC, since the scene dynamically and unpredictably changes. Thus in DVC we have a problem of

WZ coding with non-stationary correlation noise with unknown statistics. Most DVC designs so far (with

few exceptions) usually simplify this problem by modeling correlation noise, i.e., the difference between

the source and side information, as Laplacian random variables and estimate the distribution parameters

either based on training sequences or previously decoded data, which imposes certain loss especially for

high-motion sequences. Non-stationarity of the scene has been dealt mainly by estimating correlation

noise (e.g., on the pixel or block level) from previously decoded data and different initial reliability is

assigned to different pixels based on the amount of noise estimated both in pixel- and transform-domains

[9], [10], [11], [12], [13].

We propose in this paper an efficient way of estimating correlation between X and Y by tightly

incorporating the process within the SW decoder and augmenting the SW code factor graph to include

correlation variable nodes with particles such that particle filtering is performed jointly with belief

propagation over the factor graph during the SW decoding process. Thus, in contrast to previous work

[9], [10], [11], [12], [13], conventional belief propagation-based SW decoding and correlation statistics

estimation are considered jointly. The proposed correlation estimation design is tested on a transform-

domain DVC [14] with a feedback channel, but with joint bit-plane coding [15].

This paper’s contributions can thus be summarized as:

1) Introduce correlation noise estimation within the SW decoding process that takes into account both

source and side-information statistics.

2) Construct a factor graph with adaptively connected regions incorporating joint bit-plane SW de-

coding and correlation variable nodes for correlation estimation to capture correlation statistics for
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different video sequences.

3) Perform inference, applied over the augmented SW factor graph, using a modified Belief Prop-

agation algorithm that works jointly with particle filtering on particles tied to the correlation

variable nodes, to successively refine estimation of the correlation noise and source iteratively

until convergence is reached. Statistics of the side information are inherently captured.

4) Incorporate the proposed joint bit-plane decoding as well as the adaptive correlation estimation

design into a transform-domain state-of-the-art DVC.

We modified the state-of-the-art transform-domain DISCOVER [14] decoder by including both the

proposed correlation-tracking algorithm and joint bit-plane decoding, comparing performance to that

obtained with the traditional DISCOVER codec of [14] to demonstrate the effectiveness of the proposed

approach. Moreover, by combining our proposed scheme with the estimation algorithm of [11], we

demonstrate the refinement in correlation statistics introduced via our proposed scheme. Note that in the

proposed DVC codec we did not introduce any changes in the encoding process with respect to classic

DVC, maintaining low encoding complexity.

The paper is organized as follows. In the next section, we outline previous methods for correlation

estimation. Factor graph construction is explained in Section III. We describe standard belief propagation

(BP) and explain the concept of adaptive graph-based decoding incorporating particle filtering in Section

IV. In Section V, the proposed scheme built within a state-of-the-art DVC setup is described, followed

by experimental results in Section VI. The paper concludes with Section VII.

II. BACKGROUND: CORRELATION ESTIMATION

Despite advances in practical DSC designs, the widespread application of DSC is limited by the accurate

estimation of correlation between source and side information. In this section, we review related work on

the various approaches to correlation estimation for DSC in general, including DVC. We also highlight

how our proposed correlation tracking algorithm differs from these approaches. A detailed treatment

of our proposed algorithm including factor graph construction and message passing on the graph with

particle filtering is provided in Sections III and IV.

In [16], [17], [18], [19], the correlation in the SW coding problem is modeled using a binary symmetric

channel (BSC) with crossover probability as the parameter to be estimated. However, these correlation

estimation studies in [16], [17], [18] assume that the correlation parameter is constant and does not

change within the code block. To estimate non-stationary correlation statistics for the BSC correlation

model during SW decoding, we proposed particle based belief propagation algorithm on augmented factor
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graph in our prior work [19]. Due to the close relationship between SW coding and channel coding, the

proposed approach can also be used for channel state estimation [20]. However, these previous studies of

correlation estimation in DSC focus on binary sources, which are not suitable for the non-binary frame

sources in the DVC case.

In WZ coding, the encoder does not need to know/use side information, thus making it possible

to accomplish predictive coding without encoder motion compensation. In a nutshell, a block of pix-

els/coefficients in the current frame is WZ encoded into a stream without any reference to previously

encoded data, and the decoder uses all available information to generate a side information block that

will be used to WZ decode the compressed stream. State-of-the-art WZ coding designs based on turbo,

LDPC, and other graph-based codes are successfully used for DVC (see [21], [22], [23] and references

therein).

Note that a key difference between conventional WZ coding and DVC is that in the former statistics of

the correlation noise are known to both the encoder and decoder and does not change over time. In DVC,

however, the decoder needs to generate side information using only the information it has; regardless of

how side information is generated, correlation noise statistics will be unknown and dynamically change

over time. Indeed, due to the non-stationarity of real scenes, WZ coding in DVC has to deal with varying

correlation noise statistics.

Estimating correlation statistics has been identified as a key challenge in DVC. Usually, correlation

error is modeled as a Laplacian random variable whose parameters are estimated from previously decoded

frames. It has been shown however that these models are not accurate enough if there are occluded regions

in the scene [9]. In this case, the correlation noise would be concentrated in the occluded areas, which

are usually at the boundaries of moving objects.

In [10], the correlation noise is always modeled as Laplacian, but to capture the non-stationary nature

of the scene, the correlation parameter was varied from pixel to pixel. The noise power is increased if

the pixel difference between motion compensated blocks in the two key frames used to generate side

information is high; otherwise, it is decreased. The reasoning behind this method is that if the difference

between the two key frames is high then we have less confidence in their average and the noise variance

is higher. Thus, incorporating this model within SW decoding ensures that the SW code assigns higher

reliability to pixels that have been predicted with higher accuracy, that is, the difference between the

key frames is smaller. Similarly, in [11], the Laplacian distribution is used with the parameter estimated

online at the sequence, frame, block, and pixel level from decoded frames at the decoder. In [12],

[13], improved online channel estimators are proposed that attempt to address the issue of difficulty in
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adaptive correlation in smaller spatial regions due to the difficulty in acquiring sufficient statistics. The

above correlation models determine their parameters based on the noise realization in a given temporal or

spatio-temporal neighbourhood. In [24], a side information dependent correlation noise model is proposed

where the standard deviation of the Laplacian model is a function of a particular realization of the side

information at each pixel position.

Note that in [9], [10], [11], [12], [13], [24], non-stationarity of a scene is addressed by changing the

correlation model on-the-fly and supplying the SW decoder with different initial reliability estimates.

However, all of these works assign each band or coefficient a Laplacian parameter, which is estimated

using previous successfully decoded information, before the current band SW decoding, but do not refine

the estimated Laplacian parameter using current decoded information when decoding is in process.

Since the SW decoding process refines starting beliefs, this paper postulates that unifying the process

of correlation estimation and joint bit-plane decoding into a single joint process can provide better

statistics estimate and consequently improved performance. Indeed, the performance improvement of

such unification for pixel-domain DVC is demonstrated in our conference paper [25], while this paper

will fully develop the solution for the transform-domain state-of-the-art DVC system and compare with

benchmark DISCOVER codec [14] and correlation estimation of [11]. Note that this unification of

correlation estimation and SW decoding will also enable the correlation estimator to take into account

side information statistics and any of the methods of [9], [10], [11], [12], [13] can be used as an initial

point that will be refined during SW decoding.

In this paper, unlike approaches described above, we introduce correlation noise estimation for non-

binary sources within the SW decoding process of the DVC architecture, taking into account both source

and side-information statistics. This is achieved by augmenting the SW code factor graph with correlation

variable nodes for correlation estimation to adaptively capture correlation statistics for different video

sequences. We model correlation noise with a Laplacian distribution, unlike previous approaches [16],

[17], [18], [19] for DSC where correlation estimation was modelled by the BSC for binary sources. The

non-binary nature of the correlation noise is addressed by incorporating particle filtering within the belief

propagation inference algorithm applied over the overall graph connecting the correlation variables and

SW factor graph, thus capturing source and side-information statistics at each iteration.

III. FACTOR GRAPH CONSTRUCTION

A factor graph is a particular type of graphical model that enables efficient computation of marginal

distributions through the sum-product algorithm, commonly referred to as belief propagation. A factor
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Fig. 1. Factor graph of joint bit-plane SW decoding with correlation estimation.

graph is characterized by a node (usually depicted by a circle) for every variable in the distribution,

additional nodes (depicted by small squares) for each factor in the joint distribution and undirected links

connecting each factor node to all of the variables nodes on which that factor depends. Factor graphs

together with the sum-product algorithm are typically used for the decoding of capacity-approaching

error-correcting channel codes, such as LDPC, which we employ for SW decoding.

We model the correlation between source and side information as Laplacian, and build a factor graph

to capture joint bit-plane decoding, striving for efficient compression, accurate correlation modeling, and

good performance. For WZ coding, we carry out joint bit-plane coding by first quantizing an N -length

source sample xi (pixel or transform coefficient in DVC), i = 1, · · · , N , into Q[xi] using 2Mb levels

quantization (see Fig.1 for an example with Mb = 3). We denote x1
i , x

2
i , · · · , xMb

i as the binary format

of the index Q[xi], and denote B = x1
1, x

2
1, · · · , xMb

1 , x1
2, x

2
2, · · · , xMb

N as the block which combines all

the bit variables. The block B is encoded using LDPC-based SW codes and generates parity/syndrome

bits S = s1, s2, · · · , sM . This results in an MbN : M SW compression ratio.

In Region III, the factor nodes f1, f2, · · · , fM , connect the bit variable nodes Xj
i , i = 1, · · · , N ,

j = 1, · · · ,Mb, and take into account constraints imposed by the received parity/syndrome bits. For the

factor node fa, a = 1, . . . , M , we define the corresponding factor function

fa(x̃a, sa) =





1, if sa ⊕
⊕

x̃a = 0,

0, otherwise.
(1)
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where x̃a denotes the set of neighbors of factor node fa, and
⊕

x̃a denotes the binary sum of all elements

of the set x̃a.

Let yi, the variable of node Yi, i = 1, · · · , N , be i-th sample (pixel or transform coefficient in DVC)

of the side information available at the decoder. To take into account the remaining correlation between

quantization indices Q[xi] and side information yi, we use a Laplacian distribution to model the statistical

correlation by additionally defining correlation factor nodes gi, i = 1, · · · , N in Region II. The factor

function of gi is defined as

gi(Q[xi], yi, α) =
∫ P (Q[xi]+1)

P (Q[xi])

α

2
eα|x−yi|dx, (2)

where α is the scale parameter of the Laplacian distribution, P (•) denotes the lower boundary of

quantization partition at index “•”, i.e., if a coefficient xi satisfies P (•) ≤ xi < P (•+1), the quantization

index Q[xi] of coefficient xi is equal to “•”. In fact, the factor node gi plays a role of providing

a predetermined likelihood p(yi|Q[xi], α) to variable node Xj
i , j = 1, · · · ,Mb for LDPC based SW

decoding.

However, in practical applications such as DVC, it is rarely the case that correlation parameter α

is assumed to be known a priori. We assume that αt is unknown and varies over time, typical for

correlated frames in a video sequence. Thus, it is necessary to perform online correlation parameter

estimation to avoid the degradation of decoding performance. It also means that each factor node gi will

periodically update the likelihood p(yi|Q[xi], αt) for the respective bit variable nodes X1
i , X2

i , · · · , XMb

i

when a new estimate of correlation parameter αt is available, instead of using a predetermined likelihood

p(yi|Q[xi], α). To enable the online estimation of time-varying correlation parameter αt, we introduce

extra variable nodes Al, and factor nodes hl, l = 1, 2, . . . , N ′ (see Region I of Fig. 1). Here, we call the

number of factor nodes in Region II connecting to each variable node Al the connection ratio C 1, which

is equal to three in the example in Fig. 1. In Region I, each variable node Al is used to model the time-

varying correlation parameter αl of a block of C source samples. Moreover, the factor function hl(αl)

of factor node hl corresponds to the a priori distribution for variable αl, which is taken as a uniform

distribution. Consequently, by introducing correlation parameter estimation in Region I, likelihood factor

1To estimate a stationary correlation parameter, we can set the connection ratio equal to the code length. Moreover,

connection ratio provides a trade-off between complexity and spatial variation. Non-stationary correlation parameter estimation

and connection ratio are discussed in Section V.
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function in (2) will be updated as

gi(Q[xi], yi, αl) =
∫ P (Q[xi]+1)

P (Q[xi])

αl

2
eαl|x−yi|dx. (3)

The final factor graph capturing and connecting SW coding and correlation tracking (Fig. 1) comprises

Region III, with a standard Tanner graph for bit-plane LDPC decoding, and Region I, with a bipartite

graph capturing correlation parameter, and Region II, where factor nodes gi, defined in (3) for Laplacian

correlation connect the two regions.

IV. MESSAGE PASSING ALGORITHM WITH PARTICLE FILTERING ON CONSTRUCTED GRAPH

In this section, we first review the standard belief propagation (BP) algorithm, and then describe the

proposed message passing algorithm for efficient SW decoding and correlation estimation via the BP

algorithm operating jointly with the particle filtering algorithm.

A. Review of Belief Propagation Algorithm

The BP algorithm is an approximate technique for computing marginal probabilities by exchanging

the message between connected nodes. Denote ma→i (xi) as the message sent from a factor node a

to a variable node i, and mi→a (xi) as the message sent from a variable node i to a factor node a.

Loosely speaking, ma→i (xi) and mi→a (xi) can be interpreted as the beliefs of node i taking the value

xi transmitting from node a to i and from node i to a, respectively. The message updating rules can be

expressed as follows:

mi→a (xi) ∝
∏

c∈N \a(i)

mc→i (xi) (4)

and

ma→i (xi) ∝
∑

xa\xi


fa (xa)

∏

j∈N \i(a)

mj→a (xj)


, (5)

where N \a (i) denotes the set of all neighbors’ indices of node i excluding the index of node a; fa is

the factor function for factor node a;
∑

xa\xi

denotes a sum over all the variables in xa that are arguments

of fa except xi. Moreover, the BP algorithm approximates the belief of node i taking xi as

bi (xi) ∝
∏

a∈N (i)

ma→i (xi). (6)
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B. Particle based belief propagation algorithm

Based on the factor graph in Fig. 1, messages are passed iteratively between connected variable nodes

and factor nodes in all the regions of the graph until the algorithm converges, i.e., the variable nodes

converge to an estimate with the syndrome matching with the received one and we can stop updating their

belief, or until a fixed number of iterations is reached. These messages (inferences or beliefs on source

and correlation parameter) will represent the influence that one variable has on another. We group these

types of messages into the three connected regions identified previously, thus generalizing BP. Hence, our

correlation estimation exploits variations in side information in each bit-plane, and dynamically tracks

spatial and temporal variations in correlation between source and side information.

Standard BP generally used for SW decoding, can handle only discrete variables. The correlation

parameter, however, is not a discrete variable, since it varies continuously over time. Thus we only operate

standard BP in Region III of the factor graph (Fig. 1), but cannot apply BP directly in Regions I and

II for correlation parameter estimation. In Bayesian inference, the estimation of correlation parameter αl

corresponds to the estimation of its posterior distribution, i.e., p(αl|yl), where yl = (yi|i ∈ N \hl(Al)),

and N \hl(Al) represents the set of all neighbors’ indices for a variable node Al except the index of

hl. Then with the posterior distribution, the likelihood p(yi|Q[xi], αl) is easily obtained to improve the

LDPC-based SW decoding, where the likelihood p(yi|Q[xi], αl) corresponds to the message mgi→Xj
i
(xj

i ),

j = 1, 2, · · · ,Mb. Based on Bayes’ rule and LDPC-based SW coding, it is easy to verify that

p(αl|yl) =

∏
i∈N\hl (Al)

p(αl)p(yi|αl)∫
αl

∏
i∈N\hl (Al)

p(αl)p(yi|αl)

=

∏
i∈N\hl (Al)

∫
Q[xi]

p(αl)p(Q[xi])p(yi|Q[xi];αl)∫
αl

∏
i∈N\hl (Al)

∫
Q[xi]

p(αl)p(Q[xi])p(yi|Q[xi]; αl)
,

(7)

where p(αl), the a priori distribution for αl, is modeled by the factor function hl(αl); p(yi|Q[xi];αl),

the likelihood for yi, is modeled by the factor function g(yi; Q[xi], αl); p(Q[xi]), the a priori distribution

for quantized index of xi, is captured by the message mXj
i→gi

(xj
i ) for each bit-plane defined in [26].

Then the posterior distribution (7) can be written as

p(αl|yl) =
1
Zl

h(αl)
∏

i∈N\hl (Al)

∑

x
Mb
i

g(yi;Q[xi], αl)
∏

j∈1,2,··· ,Mb

mXj
i→gi

(xj
i )

=
1
Zl

mhl→Al
(αl)

∏

i∈N\hl (Al)

mgi→Al
(αl),

(8)

where Zl is a normalization constant,
∑

x
Mb
i

denotes a sum over all the bit variables in xMb

i , the value

of message mXj
i→gi

(xj
i ) is updated iteratively by variable node Xj

i in Region III according to BP

update rule (4), message mhl→Al
(αl) = h(αl) comes from prior factor node in Region I, and message
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mgi→Al
(αl) =

∑
x

Mb
i

g(yi; Q[xi], αl)
∏

j∈1,2,··· ,Mb
mXj

i→gi
(xj

i ) comes from likelihood factor node in

Region II according to the BP update rule (5).

However, since all the bit variables xj
i , j = 1, · · · ,Mb, in xMb

i are discrete and take values 0 or 1,

in (8), the message mgi→Al
(αl) =

∑
x

Mb
i

g(yi; Q[xi], αl)
∏

j∈1,2,··· ,Mb
mXj

i→gi
(xj

i ) has 2Mb terms and

the product of all the messages
∏

i∈N \hl (Al)
mgi→Al

(αl) is a mixture of 2MbC number of Laplacian

distributions, where C = |N \hl(Al)| is the connection ratio, Mb is the number of bit-planes, and MbC

can be a large number. Thus, the direct evaluation of the posterior distribution would be infeasible. To

solve this problem, a possible way is to approximate the posterior distribution through particle filtering

(PF) algorithm [27], which discretizes each continuous variable αl in Region I with Np number of particles

α1
l , α

2
l , · · · , α

Np

l sampled from distribution p(αl|yl). The posterior distribution p(αl|yl) corresponds to

the belief of variable αl in the LDPC-based SW coding shown in (8).

We therefore resort to integrating PF with the standard BP algorithm, which we refer to from now on

as particle based BP (PBP) algorithm, in order to handle continuous variables, which mainly model each

variable αl with Np particles α1
l , α

2
l , · · · , α

Np

l in our problem. In PBP, the Np sampled particles with

associated weights over variable αl simply correspond to Np labels in standard BP, where the associated

weight of each particle corresponds to the belief of each label. Then, both the value (i.e., location)

of each label (i.e., particle) and the belief of each label will be updated after each iteration, which is

different from standard BP that only updates the belief of each label after each iteration. Note that these

changes do not affect the sum-product message update rules described in the standard BP algorithm in

Section IV-A. Additionally, locations and corresponding weights of particles have to be adjusted over

time. This is achieved by using systematic resampling [28] and Metropolis-Hastings (MH) [29] random

walk perturbation after each message update.

Since we mentioned that we group these types of messages into the three connected regions identified

previously, factor node gi connecting Regions I and III plays an important role for providing periodically

updated correlation parameter estimate for joint bit-plane SW decoding, and providing candidate decoded

Q[xi] to refine the correlation parameter estimate. Thus, the iteratively updated likelihood p(yi|Q[xi], αl)

provided for LDPC-based joint bit-plane SW decoding that corresponds to the message for each bit plane
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mgi→Xj
i
(xj

i ), j = 1, 2, · · · ,Mb, can be written as

mgi→Xj
i
(xj

i ) ∝
∫

αl

∑

x
Mb
i \xj

i

gi(yi; Q[xi], αl)mAl→gi
(αl)

∏

τ∈{1,2,··· ,Mb}\j
mXτ

i →gi
(xτ

i ),

∝
∫

αl

∑

x
Mb
i \xj

i

gi(yi; Q[xi], αl)
mAl→gi(αl)

p(αl|yl)
p(αl|yl)

∏

τ∈{1,2,··· ,Mb}\j
mXτ

i →gi(x
τ
i ),

∝ Eαlp(αl|yl)




∑

x
Mb
i \xj

i

gi(yi;Q[xi], αl)
mAl→fi(αl)

p(αl|yl)

∏

τ∈{1,2,··· ,Mb}\j
mXτ

i →gi(x
τ
i )


 .

(9)

where
∑

x
Mb
i \xj

i
represents a sum over all the bit variables in xMb

i except xj
i .

Then, the above message can be approximated by a list of Np number of particles as

m̃gi→Xj
i
(xj

i ) ∝
1

Np

Np∑

k=1

∑

x
Mb
i \xj

i

gi(yi;Q[xi], αk
l )

m̃Al→gi
(αk

l )
p(αk

l |yl)

∏

τ∈{1,2,··· ,Mb}\j
mXτ

i →gi
(xτ

i ), (10)

where gi(yi; Q[xi], αk
l ) is shown in (3), p(αk

l |yl) corresponds to the belief of each label b(αk
l ) and b(αk

l ) ∝
m̃hl→Al

(αk
l )

∏
i∈N\hl (Al)

m̃gi→Al
(αk

l ). The candidate decoded Q[xi] from LDPC-based joint bit-plane SW

decoding provided for correlation parameter estimation that corresponds to the message mgi→Al
(αk

l ) with

k = 1, 2, · · · , Np can be written as

m̃gi→Al
(αk

l ) ∝
∑

x
Mb
i

gi

(
αk

l , Q[xi], yi

) ∏

j∈{1,2,··· ,Mb}
mXj

i→gi

(
xj

i

)
. (11)

Thus, by performing message passing iteratively on the built factor graph, joint bit-plane decoding and

accurate correlation estimation can be performed simultaneously to achieve efficient compression and

good performance.

The message passing schedule for the whole factor graph in Fig. 1 is summarized in the following:

1) Draw the initial Np number of variable particles in Region I from the priori distribution.

2) Initialize messages sent from factor nodes gi to variable nodes Xj
i , j = 1, 2, · · · ,Mb, in Region

III as in (10), for each of the Mb bit-planes.

3) If the decoded estimate (6) has the same syndrome as the received one or the maximum number

of iterations is reached, export the decoded codeword and finish. If not, go to Step 4.

4) Update variable nodes in Region III according to the standard BP update rule given by (4) for SW

decoding.

5) Compute the belief for each variable in Region III being xj
i ∈ {0, 1}, i = 1, 2, · · · , N , j =

1, 2, · · · , Mb according to (6).
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6) Update particles in Region I by computing the belief (=weight) of each particle for each variable

node in Region I. Here the rule for computing the belief of each particle is similar to (6) just

replacing xi to αk
l .

7) Systematic resampling of particles in Region I, followed by the Metropolis-Hastings algorithm [29]

and resetting the weight of particles to a uniform weight.

8) Update factor nodes in Regions I, II and III according to the rule in (5). Here, the specific update

equations for factor nodes gi in Region II are shown in (10) and (11).

9) Generate a new estimate based on the belief of variable nodes in Region III.

10) Go back to Step 3.

V. TRANSFORM-DOMAIN BASED DVC

In order to demonstrate the benefit of the proposed correlation tracking concept, we apply adaptive

correlation estimation on the SW factor graph in a transform-domain state-of-the-art DVC codec. As

in [6], [11], [30], all frames are classified into key frames or WZ frames, all even frames being WZ

frames. The key frames are conventionally intra-coded, for example, using H.264 Advanced Video Coding

(AVC) [31] intra coding mode. WZ frames are first transformed through a 4×4 discrete cosine transform

(DCT) and the resulting transformed coefficients of WZ frame are grouped into 16 coefficient bands

b ∈ [1, 16]. Then each coefficient band is quantized separately with 2Mb quantization levels following

[14]. Combination of all the bits from the quantization coefficient of each band is compressed using

LDPC codes. For the WZ frame decoding, the transformed coefficients of each band will be decoded in

our proposed joint bit-plane WZ decoder with PBP correlation estimation and side information available

at the decoder which is described in Section IV.

In DVC, the side information frame, as the initial estimate of the current WZ frame generated based on

the temporally adjacent reference frames, significantly influences the performance of WZ frame decoding.

In our DVC setup, we generate side information frames according to [14], [32], [30], which perform

motion-compensated interpolation (MCI) on the two closest reference frames of the current WZ frame via

forward motion estimation, bidirectional motion estimation, spatial motion smoothing and bidirectional

motion compensation.

In addition, letting the decoder control bitrate through a rate-adaptive scheme with a feedback channel

is another way to improve the final compression performance in the state-of-the-art DVC codec, where

some attractive solutions are given in [33], [34]. In this paper, we perform Low-Density Parity-Check

Accumulate (LDPCA) encoding and embed rate-compatible LDPCA codes with a feedback channel in
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our proposed scheme for rate adaptation.

With the above design, we can demonstrate the benefits of our proposed scheme within a state-of-the-

art DVC system and compare it with reference DVC systems from the literature such as DISCOVER

[14]. Note that, in the proposed scheme, DCT coefficients, which need to be connected to the same

correlation variable, may not be those neighboring variables like in the pixel-domain realization [25].

Thus it is necessary to build an adaptive connection between different DCT coefficients and correlation

variables according to an initial correlation estimate obtained from the online estimate methods [11]. In

the proposed scheme, DCT coefficients that have similar online estimated correlation statistics will be

grouped together. In fact, we sort the online estimate obtained by using [11] first, and then every C

successive estimates will be connected together. In this case, even though the connection ratio C is a

constant, the connected variables are dynamically determined for different frames. Note that, the proposed

scheme can easily be combined with any other correlation estimation techniques [12], [13], that would

be treated as an initial estimate, to refine the estimated correlation.

Remark 1. The complexity of standard LDPC decoding can be reduced by passing log-likelihood ratios

Lai , logma→i(0)
ma→i(1) instead of probabilities as messages. Note that the same method cannot be used in

general for factor nodes in Regions I and II since the method can only be used for variables with alphabet

size of two and there are generally more than two labels for the variables there. Indeed, the most complex

part in the proposed adaptive decoding scheme is the use of the particle method and factor node update in

Region II. However, the particle method is only used in Region I, and in fact, we do not need to perform

the PBP algorithm in Region I at every BP iteration. Instead, we can start the PBP algorithm after some

number of BP iterations and then perform a PBP iteration after every fixed number of BP iterations.

Moreover, the particle method used in Region I updates each variable node locally, which means that

the proposed PBP algorithm can easily take advantage of parallelism offered by Graphic Processing Unit

(GPU) devices to speed up decoding (see [35], for example).

VI. EXPERIMENTAL RESULTS

To verify the performance of correlation tracking across WZ-encoded frames in a video sequence,

we tested the above setup with many standard QCIF 15Hz video sequences, “Soccer”, “Coastguard”,

“Foreman”, “Hall & monitor”and “Salesman”. These videos covered fast, median and slow motion

conditions. In the video sequences of our experiments, we consider two frames per group of picture

(GOP) and a total of 149 frames for each video sequence. The odd frames are the key frames which are
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TABLE I

AVERAGE RESULTS IN TERMS OF BJØNTEGAARD DELTA PSNR AND BITRATE METRIC FOR THE FIVE TEST SEQUENCES AND

THREE DIFFERENT QUANTIZATION MATRICES.

BJM

∆ PSNR ∆ Rate

(dB) (%)

Foreman Q1 -0.1341 -6.0592

Q3 -0.2327 -10.5428

Q5 -0.2576 -14.1864

Soccer Q1 -0.4253 -16.1156

Q3 -0.0104 -14.6673

Q5 -0.0315 -18.1785

Coastguard Q1 -0.0384 -0.0271

Q3 -0.7409 -11.7729

Q5 -0.9804 -18.9212

Hall Q1 -0.2010 -6.1717

Q3 -0.2609 -7.5663

Q5 -0.8541 -12.8799

Salesman Q1 -0.0318 -5.1683

Q3 -0.0971 -7.9557

Q5 -0.3693 -10.5094

intraframe coded and reconstructed using H.264/AVC with profile used in [14]. The even frames, between

two intra coded key frames, are WZ frames which are encoded using LDPCA codes and recovered through

our proposed joint bit-plane decoding with correlation estimation described in Section IV.

The test conditions for the WZ frames are described in the following. First, a 4×4 float DCT transform

is performed, and the uniform scalar quantizer with data range [0, 211) and a dead-zone quantizer with

doubled zero interval and the dynamic data range [−MaxValb, MaxValb) are applied for DC and AC bands

[14], respectively. At the decoder, the side information frame is generated using the recovered frames

from H.264/AVC decoding, where search range with ±32 pixels is used for the forward motion estimation

[14]. The following parameters are used in our simulation: the number of particles Np = 12, connection

ratio C = 4 and random walk step σr = 0.005. In the proposed PBP algorithm, we do not assume that the

initial LDPCA code rate is sufficiently large for successful decoding. In practice, it is difficult to allocate

a suitable LDPCA code rate before decoding, since the true correlation information is unavailable. For

the purpose of rate saving, the LDPCA decoder in feedback-based DVC schemes usually tries to decode
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Fig. 2. Residual histogram for Foreman sequence at 15 Hz (DCT domain - DC coefficient band)

sources at a low code rate first, and then gradually increases code rate until successful decoding achieved.

In the proposed PBP algorithm, if the LDPCA decoder cannot decode the source within a fixed number

of iterations at a low code rate, it will opt for the PBP algorithm for online correlation estimation first,

instead of directly increasing the code rate. In our simulations, the PBP algorithm is used only after 50

BP iterations and then is performed every 20 BP iterations.

In Fig. 2, we verified the Laplacian assumption of the correlation between the WZ frame and the

side information frame. In this example, by setting α = 0.12, Laplace distribution provides an accurate

approximation to the residual between the WZ frame and side information frame.

First, we use the Bjøntegaard delta metric (BJM) [36] to illustrate the average difference between two

rate-distortion curves in terms of PSNR or bitrate. The Bjøntegaard delta measurements of our proposed

joint bit-plane decoding PBP method relative to the DISCOVER decoding with online estimation of [11]

(benchmark) are given in Table I, where the simulations are performed on all test sequences and for three

different quantization matrices Q1, Q3 and Q5 used in the DISCOVER codec [14]. The results show that

our proposed algorithm always outperforms the benchmark decoder in terms of bitrate saving.

Results comparing the relative performance of DISCOVER (with the correlation estimator of [11]),

joint bit-plane PBP (our proposed transform-based codec with adaptive correlation estimation), joint bit-

plane off-line (joint bit-plane decoding using true correlation statistics estimated off-line [11]) and joint

bit-plane on-line (joint bit-plane decoding using correlation statistics estimated on-line [11]) codecs for

the Soccer, Coastguard, Foreman, Hall & Monitor and Salesman video sequences, respectively, are shown

in Figs. 3 to 7. Note that the off-line estimation method of [11] models the correlation noise as a Laplacian

distributed variable whose true Laplacian parameter is calculated off-line at the DCT-band/coefficient level
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Fig. 3. PSNR comparison of the proposed PBP joint bit-plane DVC for the QCIF Soccer sequence, compressed at 15 fps.
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Fig. 4. PSNR comparison of the proposed PBP joint bit-plane DVC for the QCIF Coastguard sequence, compressed at 15 fps.

for each frame using the residual between the WZ frame and the side information. This is impractical

since in this case the encoder would need to perform side information generation. On the other hand,

the on-line estimation method of [11] models the correlation noise as Laplacian distributed, when the

Laplacian parameter is estimated using the difference between backward and forward motion compensated

frames at the decoder.

As expected, the joint bit-plane decoder (off-line) always achieves the best performance for all se-

quences (slow, median and fast motion), since it knows the true correlation statistics between source

and side information. Most importantly, our proposed PBP-based codec consistently has the next best

performance for all sequences, clearly outperforming the benchmark DISCOVER codec for all sequences

since our PBP estimator iteratively refines the correlation statistics. We also note that the joint bit-plane

setup shows a better performance than that of the benchmark DISCOVER codec since each code bit may

obtain more information from its neighboring bit-planes than the traditional separate bit-plane decoding

setup2.

2Note that the LDPC code length in the joint bit-plane decoder is Mb times larger than that of separate bit-plane decoder,

where Mb is the quantization level of DCT band b. Since the decoding performance of LDPC code depends on the code length,

the joint bit-plane decoder with longer code length is expected to outperform a separate bit-plane decoder in the simulation.

Another reason for this behavior is that the factor gi in joint bit-plane decoder could obtain information from Mb variable nodes

in Region III simultaneously, while such an advantage is not available in the separate bit-plane decoder.
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Fig. 5. PSNR comparison of the proposed PBP joint bit-plane DVC for the QCIF Foreman sequence, compressed at 15 fps.
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Fig. 6. PSNR comparison of the proposed PBP joint bit-plane DVC for the QCIF Hall Monitor sequence, compressed at 15

fps.
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Fig. 7. PSNR comparison of the proposed PBP joint bit-plane DVC for the QCIF Salesman sequence, compressed at 15 fps.

A frame-by-frame PSNR variation for the Soccer sequence with quantization matrix Q8 is shown in

Fig. 8. We found that the PSNR variation across frames is roughly 4.48 dB for the proposed PBP codec

and 2.81 dB for H.264/AVC Intra codec. Although, the PSNR variation of the proposed codec is for

almost 1.7dB larger than that of H.264/AVC Intra, the difference of average PSNR between H.264/AVC

Intra and PBP codec is only 0.35 dB. Note that the Soccer sequence is a high-motion sequence, not

suitable for DVC coding, hence the DISCOVER codec lags behind H.264 Intra for almost 2dB at this

compression rate (see [14] and references therein). Fig. 8 shows that the PSNR fluctuations of PBP and

H.264/AVC Intra have similar trend and the maximum PSNR difference between PBP and H.264 Intra

curves is about 1.33 dB.

The estimation accuracy is studied in Fig. 9 for the DC band of the first WZ frame of the Soccer

sequence. Assuming that the offline estimation is the benchmark for ideal correlation estimation, we
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Fig. 8. Frame-by-frame PSNR variance for Soccer sequence with quantization matrix Q8.
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Fig. 9. Estimation accuracy of the proposed PBP method for the DC band of the first WZ frame of the Soccer sequence.

observe the online estimation [11] is consistently far off from the offline estimation [11] while the

proposed PBP algorithm shows a similar tracking trend to the latter in estimating correlation. Similar

results are obtained for other frames. This indicates the robustness of the correlation estimator even for

high motion sequences such as Soccer.

Finally, the decoding algorithm complexity in terms of the execution time for both joint bit-plane

decoding with online correlation estimation of [11] and the proposed joint bit-plane PBP algorithm is

compared to that of the benchmark DISCOVER codec in Table II for two test sequences, WZ frames only,

and three different quantization matrices. Encoding time is the same for all three methods. The simulations

were conducted on a PC Intel i-7 980 CPU with 4GB memory. Joint bit-plane decoding with online

correlation estimation of [11] shows comparable execution time with the benchmark DISCOVER codec.

Although our current proof-of-concept proposed PBP decoding (implemented by MATLAB incorporating

JAVA) needs longer execution time to achieve a better decoding performance in terms of bitrate saving, a

shorter execution time is expected in future implementations by using more efficient programming (e.g.,
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TABLE II

DECODING EXECUTION TIME (FULL SEQUENCE IN SECONDS) OF JOINT BIT-PLANE ON-LINE [11], JOINT BIT-PLANE PBP

CODEC AND DISCOVER CODEC.

Sequences DISCOVER Joint bit-plane Joint bit-plane

on-line PBP

Foreman Q1 347.9376 359.9462 1266.4

Q3 457.0563 481.8287 3159.1

Q5 508.5244 631.7438 6035.6

Soccer Q1 581.0807 586.4243 2527.3

Q3 615.0184 623.4325 4634.3

Q5 657.3840 699.3597 6847.5

C++) and exploiting parallel processing inherent in the augmented graph decoding algorithm (see Remark

1), which would significantly mitigate the effect of particle-based BP.

VII. CONCLUSION

This paper proposes an adaptive correlation estimation scheme for distributed video coding. Unlike

current work in that direction, our proposed technique is embedded within the SW decoder itself,

thus ensuring true dynamic tracking of correlation estimation taking into account the variance of side

information. This is achieved by augmenting the SW code factor graph with correlation parameter variable

nodes together with additional factor nodes that connect the SW graph with the correlation variable nodes.

In our examples, correlation is modeled as Laplacian noise although we note that other correlation models

including Gaussian may be used with minimal change to the factor graph. Inference on the graph with

multiple connected regions can then be achieved with standard belief propagation (BP) together with

particle filtering that allows correlation parameter to take real values. The correlation variable nodes

incorporate particles on which the particle filter operates, but also require joint operation with the BP

algorithm which updates the weights of the particles. The proposed scheme boasts accurate correlation

estimation together with ease of integration with existing DVC codecs, as all that is required is replacing

the SW decoder block.

We demonstrate the benefit of using the proposed scheme with a state-of-the-art transform-domain

based DVC using adjacent H.264/AVC compressed frames to generate side-information through motion-

compensated interpolation (MCI). Simulation results for a range of slow to fast motion sequences show

significant performance improvement due to correlation tracking by our proposed PBP algorithm over
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state-of-the-art DVC codec with correlation estimation. We also show that correlation statistics are

accurately estimated online as the performance of our PBP algorithm closely (within 1-2dB PSNR)

tracks that of the DVC codec which has offline knowledge of exact correlation statistics.
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